Note:	For the benefit of the students, specially the aspiring ones, the question of JEE(advanced), 2014 are also given in this booklet. Keeping the interest of students studying in class XI, the questions based on topics from class XI have been Mathematics are 22 minutes, 35 minutes and 22 minutes respectively.

FIIT] EE SOLUTIONS TOJEE(ADVANCED)-2014 CODE PAPER-1

Note: Front and back cover pages are reproduced from actual paper back to back here.

Time: 3 Hours
Maximum Marks: 180
Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.

INSTRUCTIONS

A. General

1. This booklet is your Question Paper. Do not break the seal of this booklet before being instructed to do so by the invigilators.
2. The question paper CODE is printed on the left hand top corner of this sheet and on the back cover page of this booklet.
3. Blank space and blank pages are provided in the question paper for your rough work. No additional sheets will be provided for rough work.
4. Blank papers, clipboards, log tables, slide rules, calculators, cameras, cellular phones, pagers and electronic gadget of any kind are NOT allowed inside the examination hall.
5. Write your name and roll number in the space provided on the back cover of this booklet.
6. Answers to the questions and personal details are to be filled on an Optical Response Sheet, which is provided separately. The ORS is a doublet of two sheets - upper and lower, having identical layout. The upper sheet is a machine-gradable Objective Response Sheet (ORS) which will be collected by the invigilator at the end of the examination. The upper sheet is designed in such a way that darkening the bubble with a ball point pen will leave an identical impression at the corresponding place on the lower sheet. You will be allowed to take away the lower sheet at the end of the examination (see Figure-1 on the back cover page for the correct way of darkening the bubbles for valid answers).
7. Use a black ball point pen only to darken the bubbles on the upper original sheet. Apply sufficient pressure so that the impression is created on the lower sheet. See Figure -1 on the back cover page for appropriate way of darkening the bubbles for valid answers.
8. DO NOT TAMPER WITH / MUTILATE THE ORS SO THIS BOOKLET.
9. On breaking the seal of the booklet check that it contains 28 pages and all the 60 questions and corresponding answer choices are legible. Read carefully the instruction printed at the beginning of each section.
B. Filling the right part of the ORS
10. The ORS also has a CODE printed on its left and right parts.
11. Verify that the CODE printed on the ORS (on both the left and right parts) is the same as that on the this booklet and put your signature in the Box designated as R4.
12. IF THE CODES DO NOT MATCH, ASK FOR A CHANGE OF THE BOOKLET / ORS AS APPLICABLE.
13. Write your Name, Roll No. and the name of centre and sign with pen in the boxes provided on the upper sheet of ORS. Do not write any of this anywhere else. Darken the appropriate bubble UNDER each digit of your Roll No. in such way that the impression is created on the bottom sheet. (see example in Figure 2 on the back cover)
C. Question Paper Format

The question paper consists of three parts (Physics, Chemistry and Mathematics). Each part consists of two sections.
14. Section $\mathbf{1}$ contains $\mathbf{1 0}$ multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE OR MORE THAN ONE are correct.
15. Section 2 contains $\mathbf{1 0}$ questions. The answer to each of the questions is a single-digit integer, ranging from 0 to 9 (both inclusive)

Please read the last page of this booklet for rest of the instructions.

PART I : PHYSICS

SECTION - 1 (One or More Than One Options Correct Type)

This section contains $\mathbf{1 0}$ multiple choice type questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE THAN ONE are correct.
*1. A student is performing an experiment using a resonance column and a tuning fork of frequency $244 \mathrm{~s}^{-1}$. He is told that the air in the tube has been replaced by another gas (assume that the column remains filled with the gas). If the minimum height at which resonance occurs is $(0.350 \pm 0.005) \mathrm{m}$, the gas in the tube is (Useful information: $\sqrt{167 \mathrm{RT}}=640 \mathrm{~J}^{1 / 2} \mathrm{~mole}^{-1 / 2} ; \sqrt{140 \mathrm{RT}}=590 \mathrm{~J}^{1 / 2} \mathrm{~mole}^{-1 / 2}$. The molar masses M in grams are given in the options. Take the values of $\sqrt{\frac{10}{M}}$ for each gas as given there.)
(A) Neon $\left(\mathrm{M}=20, \sqrt{\frac{10}{20}}=\frac{7}{10}\right)$
(B) Nitrogen $\left(M=28, \sqrt{\frac{10}{28}}=\frac{3}{5}\right)$
(C) Oxygen $\left(\mathrm{M}=32, \sqrt{\frac{10}{32}}=\frac{9}{16}\right)$
(D) $\operatorname{Argon}\left(M=36, \sqrt{\frac{10}{36}}=\frac{17}{32}\right)$
2. At time $t=0$, terminal A in the circuit shown in the figure is connected to B by a key and an alternating current $\mathrm{I}(\mathrm{t})=\mathrm{I}_{0} \cos (\omega \mathrm{t})$, with $\mathrm{I}_{0}=1 \mathrm{~A}$ and $\omega=500 \mathrm{rad} / \mathrm{s}$ starts flowing in it with the initial direction shown in the figure. At $t=\frac{7 \pi}{6 \omega}$, the key is switched from B to D. Now onwards only A and D are connected. A total charge Q flows from the battery to charge the capacitor fully. If $\mathrm{C}=20 \mu \mathrm{~F}, \mathrm{R}=10 \Omega$ and the battery is ideal with emf of 50 V , identify the correct statement(s).

(A) Magnitude of the maximum charge on the capacitor before $t=\frac{7 \pi}{6 \omega}$ is $1 \times 10^{-3} \mathrm{C}$.
(B) The current in the left part of the circuit just before $t=\frac{7 \pi}{6 \omega}$ is clockwise.
(C) Immediately after A is connected to D , the current in R is 10 A .
(D) $\mathrm{Q}=2 \times 10^{-3} \mathrm{C}$.
3. A parallel plate capacitor has a dielectric slab of dielectric constant K between its plates that covers $1 / 3$ of the area of its plates, as shown in the figure. The total capacitance of the capacitor is C while that of the portion with dielectric in between is C_{1}. When the capacitor is charged, the plate area covered by the dielectric gets charge Q_{1} and the rest of the area gets charge Q_{2}. The electric field in the dielectric is E_{1} and that in the other portion is E_{2}. Choose the correct option/options, ignoring edge effects.
(A) $\frac{E_{1}}{E_{2}}=1$
(B) $\frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\frac{1}{\mathrm{~K}}$
(C) $\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}=\frac{3}{\mathrm{~K}}$
(D) $\frac{\mathrm{C}}{\mathrm{C}_{1}}=\frac{2+\mathrm{K}}{\mathrm{K}}$
*4. One end of a taut string of length 3 m along the x axis is fixed at $\mathrm{x}=0$. The speed of the waves in the string is $100 \mathrm{~ms}^{-1}$. The other end of the string is vibrating in the y direction so that stationary waves are set up in the string. The possible waveform(s) of these stationary waves is (are)
(A) $\mathrm{y}(\mathrm{t})=\mathrm{A} \sin \frac{\pi \mathrm{x}}{6} \cos \frac{50 \pi \mathrm{t}}{3}$
(B) $\mathrm{y}(\mathrm{t})=\mathrm{A} \sin \frac{\pi \mathrm{x}}{3} \cos \frac{100 \pi \mathrm{t}}{3}$
(C) $\mathrm{y}(\mathrm{t})=\mathrm{A} \sin \frac{5 \pi \mathrm{x}}{6} \cos \frac{250 \pi \mathrm{t}}{3}$
(D) $\mathrm{y}(\mathrm{t})=\mathrm{A} \sin \frac{5 \pi \mathrm{x}}{2} \cos 250 \pi \mathrm{t}$
5. A transparent thin film of uniform thickness and refractive index $n_{1}=1.4$ is coated on the convex spherical surface of radius R at one end of a long solid glass cylinder of refractive index $\mathrm{n}_{2}=1.5$, as shown in the figure. Rays of light parallel to the axis of the cylinder traversing through the film from air to glass get focused at distance f_{1} from the film, while rays of light
 traversing from glass to air get focused at distance f_{2} from the film. Then
(A) $\left|\mathrm{f}_{1}\right|=3 \mathrm{R}$
(B) $\left|\mathrm{f}_{1}\right|=2.8 \mathrm{R}$
(C) $\left|\mathrm{f}_{2}\right|=2 R$
(D) $\left|\mathrm{f}_{2}\right|=1.4 \mathrm{R}$
6. Heater of an electric kettle is made of a wire of length L and diameter d. It takes 4 minutes to raise the temperature of 0.5 kg water by 40 K . This heater is replaced by a new heater having two wires of the same material, each of length L and diameter 2d. The way these wires are connected is given in the options. How much time in minutes will it take to raise the temperature of the same amount of water by 40 K ?
(A) 4 if wires are in parallel
(B) 2 if wires are in series
(C) 1 if wires are in series
(D) 0.5 if wires are in parallel.
7. Two ideal batteries of emf V_{1} and V_{2} and three resistances $\mathrm{R}_{1}, \mathrm{R}_{2}$ and R_{3} are connected as shown in the figure. The current in resistance R_{2} would be zero if
(A) $\mathrm{V}_{1}=\mathrm{V}_{2}$ and $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}$
(B) $V_{1}=V_{2}$ and $R_{1}=2 R_{2}=R_{3}$
(C) $\mathrm{V}_{1}=2 \mathrm{~V}_{2}$ and $2 \mathrm{R}_{1}=2 \mathrm{R}_{2}=\mathrm{R}_{3}$
(D) $2 \mathrm{~V}_{1}=\mathrm{V}_{2}$ and $2 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}$

8. Let $E_{1}(r), E_{2}(r)$ and $E_{3}(r)$ be the respective electric fields at a distance r from a point charge Q, an infinitely long wire with constant linear charge density λ, and an infinite plane with uniform surface charge density σ. If $E_{1}\left(r_{0}\right)=E_{2}\left(r_{0}\right)=E_{3}\left(r_{0}\right)$ at a given distance r_{0}, then
(A) $\mathrm{Q}=4 \sigma \pi \mathrm{r}_{0}^{2}$
(B) $\mathrm{r}_{0}=\frac{\lambda}{2 \pi \sigma}$
(C) $\mathrm{E}_{1}\left(\mathrm{r}_{0} / 2\right)=2 \mathrm{E}_{2}\left(\mathrm{r}_{0} / 2\right)$
(D) $\mathrm{E}_{2}\left(\mathrm{r}_{0} / 2\right)=4 \mathrm{E}_{3}\left(\mathrm{r}_{0} / 2\right)$
9. A light source, which emits two wavelengths $\lambda_{1}=400 \mathrm{~nm}$ and $\lambda_{2}=600 \mathrm{~nm}$, is used in a Young's double slit experiment. If recorded fringe widths for λ_{1} and λ_{2} are β_{1} and β_{2} and the number of fringes for them within a distance y on one side of the central maximum are m_{1} and m_{2}, respectively, then
(A) $\beta_{2}>\beta_{1}$
(B) $\mathrm{m}_{1}>\mathrm{m}_{2}$
(C) From the central maximum, $3^{\text {rd }}$ maximum of λ_{2} overlaps with $5^{\text {th }}$ minimum of λ_{1}
(D) The angular separation of fringes for λ_{1} is greater than λ_{2}
*10. In the figure, a ladder of mass m is shown leaning against a wall. It is in static equilibrium making an angle θ with the horizontal floor. The coefficient of friction between the wall and the ladder is μ_{1} and that between the floor and the ladder is μ_{2}. The normal reaction of the wall on the ladder is N_{1} and that of the floor is N_{2}. If the ladder is about to slip, then
(A) $\mu_{1}=0 \quad \mu_{2} \neq 0$ and $N_{2} \tan \theta=\frac{\mathrm{mg}}{2}$
(B) $\mu_{1} \neq 0 \quad \mu_{2}=0$ and $N_{1} \tan \theta=\frac{\mathrm{mg}}{2}$

(C) $\mu_{1} \neq 0 \quad \mu_{2} \neq 0$ and $N_{2}=\frac{\mathrm{mg}}{1+\mu_{1} \mu_{2}}$
(D) $\mu_{1}=0 \mu_{2} \neq 0$ and $\mathrm{N}_{1} \tan \theta=\frac{\mathrm{mg}}{2}$

SECTION - 2: (Only Integer Value Correct Type)

This section contains $\mathbf{1 0}$ questions. Each question, when worked out will result in one integer from 0 to 9 (both inclusive).
11. During Searle's experiment, zero of the Vernier scale lies between $3.20 \times 10^{-2} \mathrm{~m}$ and $3.25 \times 10^{-2} \mathrm{~m}$ of the main scale. The $20^{\text {th }}$ division of the Vernier scale exactly coincides with one of the main scale divisions. When an additional load of 2 kg is applied to the wire, the zero of the Vernier scale still lies between $3.20 \times$ $10^{-2} \mathrm{~m}$ and $3.25 \times 10^{-2} \mathrm{~m}$ of the main scale but now the $45^{\text {th }}$ division of Vernier scale coincides with one of the main scale divisions. The length of the thin metallic wire is 2 m and its cross-sectional area is 8×10^{-7} m^{2}. The least count of the Vernier scale is $1.0 \times 10^{-5} \mathrm{~m}$. The maximum percentage error in the Young's modulus of the wire is
*12. Airplanes A and B are flying with constant velocity in the same vertical plane at angles 30° and 60° with respect to the horizontal respectively as shown in the figure. The speed of A is $100 \sqrt{3} \mathrm{~ms}^{-1}$. At time $t=0$ s , an observer in A finds B at a distance of 500 m . This observer sees B moving with a constant velocity perpendicular to the line of motion of A. If at $t=t_{0}$, A just escapes being hit by B, t_{0} in seconds is

*13. A thermodynamic system is taken from an initial state i with internal energy $\mathrm{U}_{\mathrm{i}}=100 \mathrm{~J}$ to the final state f along two different paths iaf and ibf, as schematically shown in the figure. The work done by the system along the paths $a f, i b$ and $b f$ are $\mathrm{W}_{\mathrm{af}}=200 \mathrm{~J}, \mathrm{~W}_{\mathrm{ib}}=50 \mathrm{~J}$ and $\mathrm{W}_{\mathrm{bf}}=100 \mathrm{~J}$ respectively. The heat supplied to the system along the path iaf, ib and bf are $\mathrm{Q}_{\mathrm{iff}}, \mathrm{Q}_{\mathrm{ib}}$ and Q_{bf} respectively. If the internal energy of the system in the state b is $\mathrm{U}_{\mathrm{b}}=200 \mathrm{~J}$ and $\mathrm{Q}_{\mathrm{iaf}}=500 \mathrm{~J}$, the ratio $\mathbf{Q}_{\mathrm{bf}} / \mathbf{Q}_{\mathrm{ib}}$ is

14. Two parallel wires in the plane of the paper are distance X_{0} apart. A point charge is moving with speed u between the wires in the same plane at a distance X_{1} from one of the wires. When the wires carry current of magnitude I in the same direction, the radius of curvature of the path of the point charge is R_{1}. In contrast, if the currents I in the two wires have directions opposite to each other, the radius of curvature of the path is R_{2}. If $\frac{X_{0}}{X_{1}}=3$, the value of $\frac{R_{1}}{R_{2}}$ is
15. To find the distance d over which a signal can be seen clearly in foggy conditions, a railways engineer uses dimensional analysis and assumes that the distance depends on the mass density ρ of the fog, intensity (power/area) S of the light from the signal and its frequency f. The engineer finds that d is proportional to $S^{1 / n}$. The value of n is
*16. A rocket is moving in a gravity free space with a constant acceleration of $2 \mathrm{~ms}^{-2}$ along +x direction (see figure). The length of a chamber inside the rocket is 4 m . A ball is thrown from the left end of the chamber in $+x$ direction with a speed of $0.3 \mathrm{~ms}^{-1}$ relative to the rocket. At the same time, another ball is thrown in -x direction with a speed of
 $0.2 \mathrm{~ms}^{-1}$ from its right end relative to the rocket. The time in seconds when the two balls hit each other is
17. A galvanometer gives full scale deflection with 0.006 A current. By connecting it to a 4990Ω resistance, it can be converted into a voltmeter of range $0-30 \mathrm{~V}$. If connected to a $\frac{2 \mathrm{n}}{249} \Omega$ resistance, it becomes an ammeter of range $0-1.5 \mathrm{~A}$. The value of n is
*18. A uniform circular disc of mass 1.5 kg and radius 0.5 m is initially at rest on a horizontal frictionless surface. Three forces of equal magnitude $\mathrm{F}=0.5 \mathrm{~N}$ are applied simultaneously along the three sides of an equilateral triangle XYZ with its vertices on the perimeter of the disc (see figure). One second after applying the forces, the angular speed of the disc in $\mathrm{rad} \mathrm{s}^{-1}$ is

*19. A horizontal circular platform of radius 0.5 m and mass 0.45 kg is free to rotate about its axis. Two massless spring toy-guns, each carrying a steel ball of mass 0.05 kg are attached to the platform at a distance 0.25 m from the centre on its either sides along its diameter (see figure). Each gun simultaneously fires the balls horizontally and perpendicular to the diameter in opposite directions. After leaving the platform, the balls have horizontal speed of $9 \mathrm{~ms}^{-1}$ with respect to the ground. The rotational speed of the platform in $\mathrm{rad} \mathrm{s}^{-1}$ after the balls leave the platform is
*20. Consider an elliptically shaped rail PQ in the vertical plane with $\mathrm{OP}=3 \mathrm{~m}$ and $\mathrm{OQ}=4 \mathrm{~m}$. A block of mass 1 kg is pulled along the rail from P to Q with a force of 18 N , which is always parallel to line PQ (see the figure given). Assuming no frictional losses, the kinetic energy of the block when it reaches Q is $(\mathrm{n} \times 10)$ Joules. The value of n is (take acceleration due to gravity $=10 \mathrm{~ms}^{-2}$)

PART - II: CHEMISTRY

SECTION - 1 (One or More Than One Options Correct Type)

This section contains $\mathbf{1 0}$ multiple choice type questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE THAN ONE are correct.
*21. The correct combination of names for isomeric alcohols with molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ is/are
(A) tert-butanol and 2-methylpropan-2-ol
(B) tert-butanol and 1, 1-dimethylethan-1-ol
(C) n-butanol and butan-1-ol
(D) isobutyl alcohol and 2-methylpropan-1-ol
*22. An ideal gas in a thermally insulated vessel at internal pressure $=P_{1}$, volume $=V_{1}$ and absolute temperature $=\mathrm{T}_{1}$ expands irreversibly against zero external pressure, as shown in the diagram. The final internal pressure, volume and absolute temperature of the gas are P_{2}, V_{2} and T_{2}, respectively. For this expansion,

(A) $\mathrm{q}=0$
(B) $\mathrm{T}_{2}=\mathrm{T}_{1}$
(C) $P_{2} V_{2}=P_{1} V_{1}$
(D) $P_{2} V_{2}{ }^{\gamma}=P_{1} V_{1}{ }^{\gamma}$
*23. Hydrogen bonding plays a central role in the following phenomena:
(A) Ice floats in water.
(B) Higher Lewis basicity of primary amines than tertiary amines in aqueous solutions.
(C) Formic acid is more acidic than acetic acid.
(D) Dimerisation of acetic acid in benzene.
24. In a galvanic cell, the salt bridge
(A) does not participate chemically in the cell reaction.
(B) stops the diffusion of ions from one electrode to another.
(C) is necessary for the occurrence of the cell reaction.
(D) ensures mixing of the two electrolytic solutions.
*25. For the reaction:
$\mathrm{I}^{-}+\mathrm{ClO}_{3}^{-}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Cl}^{-}+\mathrm{HSO}_{4}^{-}+\mathrm{I}_{2}$
The correct statement(s) in the balanced equation is/are:
(A) Stoichiometric coefficient of HSO_{4}^{-}is 6.
(B) Iodide is oxidized.
(C) Sulphur is reduced.
(D) $\mathrm{H}_{2} \mathrm{O}$ is one of the products.
*26. The reactivity of compound Z with different halogens under appropriate conditions is given below:

The observed pattern of electrophilic substitution can be explained by
(A) the steric effect of the halogen
(B) the steric effect of the tert-butyl group
(C) the electronic effect of the phenolic group
(D) the electronic effect of the tert-butyl group
*27. The correct statement(s) for orthoboric acid is/are
(A) It behaves as a weak acid in water due to self ionization.
(B) Acidity of its aqueous solution increases upon addition of ethylene glycol.
(C) It has a three dimensional structure due to hydrogen bonding.
(D) It is a weak electrolyte in water.
28. Upon heating with $\mathrm{Cu}_{2} \mathrm{~S}$, the reagent(s) that give copper metal is/are
(A) CuFeS_{2}
(B) CuO
(C) $\mathrm{Cu}_{2} \mathrm{O}$
(D) CuSO_{4}
*29. The pair(s) of reagents that yield paramagnetic species is/are
(A) Na and excess of NH_{3}
(B) K and excess of O_{2}
(C) Cu and dilute HNO_{3}
(D) O_{2} and 2-ethylanthraquinol
30. In the reaction shown below, the major product(s) formed is/are

(A)

(B)

(C)

(D)

SECTION - 2: (Only Integer Value Correct Type)

This section contains 10 questions. Each question, when worked out will result in one integer from 0 to 9 (both inclusive).
31. Among $\mathrm{PbS}, \mathrm{CuS}, \mathrm{HgS}, \mathrm{MnS}, \mathrm{Ag}_{2} \mathrm{~S}, \mathrm{NiS}, \mathrm{CoS}, \mathrm{Bi}_{2} \mathrm{~S}_{3}$ and SnS_{2}, the total number of BLACK coloured sulphides is
*32. The total number(s) of stable conformers with non-zero dipole moment for the following compound is(are)

33. Consider the following list of reagents:

Acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, alkaline $\mathrm{KMnO}_{4}, \mathrm{CuSO}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Cl}_{2}, \mathrm{O}_{3}, \mathrm{FeCl}_{3}, \mathrm{HNO}_{3}$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.
The total number of reagents that can oxidise aqueous iodide to iodine is
34. A list of species having the formula XZ_{4} is given below.
$\mathrm{XeF}_{4}, \mathrm{SF}_{4}, \mathrm{SiF}_{4}, \mathrm{BF}_{4}^{-}, \mathrm{BrF}_{4}^{-},\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+},\left[\mathrm{FeCl}_{4}\right]^{2-},\left[\mathrm{CoCl}_{4}\right]^{2-}$ and $\left[\mathrm{PtCl}_{4}\right]^{2-}$.
Defining shape on the basis of the location of X and Z atoms, the total number of species having a square planar shape is
35. Consider all possible isomeric ketones, including stereoisomers of $\mathrm{MW}=100$. All these isomers are independently reacted with NaBH_{4} (NOTE: stereoisomers are also reacted separately). The total number of ketones that give a racemic product(s) is/are
*36. In an atom, the total number of electrons having quantum numbers $n=4,\left|m_{l}\right|=1$ and $m_{\mathrm{s}}=-1 / 2$ is
*37. If the value of Avogadro number is $6.023 \times 10^{23} \mathrm{~mol}^{-1}$ and the value of Boltzmann constant is $1.380 \times 10^{-23} \mathrm{JK}^{-1}$, then the number of significant digits in the calculated value of the universal gas constant is
38. $\quad \mathrm{MX}_{2}$ dissociates in M^{2+} and X^{-}ions in an aqueous solution, with a degree of dissociation (α) of 0.5 . The ratio of the observed depression of freezing point of the aqueous solution to the value of the depression of freezing point in the absence of ionic dissociation is
39. The total number of distinct naturally occurring amino acids obtained by complete acidic hydrolysis of the peptide shown below is

[^0]
PART - III: MATHEMATICS

SECTION - 1 : (One or More than One Options Correct Type)

This section contains $\mathbf{1 0}$ multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE THAN ONE are correct.
41. Let $f:(0, \infty) \rightarrow \mathrm{R}$ be given by $f(x)=\int_{1 / x}^{x} e^{-\left(t+\frac{1}{t}\right)} \frac{d t}{t}$, then
(A) $f(x)$ is monotonically increasing on $[1, \infty)$
(B) $f(x)$ is monotonically decreasing on $(0,1)$
(C) $f(x)+f\left(\frac{1}{x}\right)=0$, for all $x \in(0, \infty)$
(D) $f\left(2^{x}\right)$ is an odd function of x on R
42. Let $a \in \mathrm{R}$ and let $f: \mathrm{R} \rightarrow \mathrm{R}$ be given by $f(x)=x^{5}-5 x+a$, then
(A) $f(x)$ has three real roots if $a>4$
(B) $f(x)$ has only one real roots if $a>4$
(C) $f(x)$ has three real roots if $a<-4$
(D) $f(x)$ has three real roots if $-4<a<4$
43. For every pair of continuous functions $f, g:[0,1] \rightarrow \mathrm{R}$ such that $\max \{f(x): x \in[0,1]\}=\max \{g(x): x \in$ $[0,1]\}$, the correct statement(s) is(are)
(A) $(f(c))^{2}+3 f(c)=(g(c))^{2}+3 g(c)$ for some $c \in[0,1]$
(B) $(f(c))^{2}+f(c)=(g(c))^{2}+3 g(c)$ for some $c \in[0,1]$
(C) $(f(c))^{2}+3 f(c)=(g(c))^{2}+g(c)$ for some $c \in[0,1]$
(D) $(f(\mathrm{c}))^{2}=(g(c))^{2}$ for some $c \in[0,1]$
*44. A circle S passes through the point $(0,1)$ and is orthogonal to the circles $(x-1)^{2}+y^{2}=16$ and $x^{2}+y^{2}=1$. Then
(A) radius of S is 8
(B) radius of S is 7
(C) centre of S is $(-7,1)$
(D) centre of S is $(-8,1)$
45. Let \vec{x}, \vec{y} and \vec{z} be three vectors each of magnitude $\sqrt{2}$ and the angle between each pair of them is $\frac{\pi}{3}$. If \vec{a} is a non-zero vector perpendicular to \vec{x} and $\vec{y} \times \vec{z}$ and \vec{b} is a non-zero vector perpendicular to \vec{y} and $\vec{z} \times \vec{x}$, then
(A) $\vec{b}=(\vec{b} \cdot \vec{z})(\vec{z}-\vec{x})$
(B) $\vec{a}=(\vec{a} \cdot \vec{y})(\vec{y}-\vec{z})$
(C) $\vec{a} \cdot \vec{b}=-(\vec{a} \cdot \vec{y})(\vec{b} \cdot \vec{z})$
(D) $\vec{a}=(\vec{a} \cdot \vec{y})(\vec{z}-\vec{y})$
46. From a point $\mathrm{P}(\lambda, \lambda, \lambda)$, perpendiculars PQ and PR are drawn respectively on the lines $y=x, z=1$ and $y=-$ $x, z=-1$. If P is such that $\angle \mathrm{QPR}$ is a right angle, then the possible value(s) of λ is(are)
(A) $\sqrt{2}$
(B) 1
(C) -1
(D) $-\sqrt{2}$
47. Let M be a 2×2 symmetric matrix with integer entries. Then M is invertible if
(A) the first column of M is the transpose of the second row of M
(B) the second row of M is the transpose of the first column of M
(C) M is a diagonal matrix with non-zero entries in the main diagonal
(D) the product of entries in the main diagonal of M is not the square of an integer
48. Let M and N be two 3×3 matrices such that $M N=N M$. Further, if $M \neq N^{2}$ and $M^{2}=N^{4}$, then
(A) determinant of $\left(\mathrm{M}^{2}+\mathrm{MN}^{2}\right)$ is 0
(B) there is a 3×3 non-zero matrix U such that $\left(\mathrm{M}^{2}+\mathrm{MN}^{2}\right) U$ is the zero matrix
(C) determinant of $\left(\mathrm{M}^{2}+\mathrm{MN}^{2}\right) \geq 1$
(D) for a 3×3 matrix U, if $\left(M^{2}+M N^{2}\right) U$ equals the zero matrix then U is the zero matrix
49. Let $f:[a, b] \rightarrow[1, \infty)$ be a continuous function and let $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as
$g(x)=\left\{\begin{array}{ccc}0 & \text { if } & x<a, \\ \int_{a}^{x} f(t) d t & \text { if } & a \leq x \leq b, \\ \int_{a}^{b} f(t) d t & \text { if } & x>b\end{array}\right.$
Then
(A) $g(x)$ is continuous but not differentiable at a
(B) $g(x)$ is differentiable on R
(C) $g(x)$ is continuous but not differentiable at b
(D) $\mathrm{g}(\mathrm{x})$ is continuous and differentiable at either a or b but not both
50. Let $f:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathrm{R}$ be given by $\mathrm{f}(\mathrm{x})=(\log (\sec x+\tan x))^{3}$. Then
(A) $f(x)$ is an odd function
(B) $f(x)$ is a one-one function
(C) $f(x)$ is an onto function
(D) $f(x)$ is an even function

SECTION - 2 : (One Integer Value Correct Type)

This section contains $\mathbf{1 0}$ questions. Each question, when worked out will result in one integer from 0 to 9 (both inclusive).
*51. Let $n_{1}<n_{2}<n_{3}<n_{4}<n_{5}$ be positive integers such that $n_{1}+n_{2}+n_{3}+n_{4}+n_{5}=20$. Then the number of such distinct arrangements $\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)$ is \qquad
*52. Let $n \geq 2$ be an integer. Take n distinct points on a circle and join each pair of points by a line segment. Colour the line segment joining every pair of adjacent points by blue and the rest by red. If the number of red and blue line segments are equal, then the value of n is \qquad
53. Let $f: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be respectively given by $f(x)=|x|+1$ and $g(x)=x^{2}+1$. Define $h: \mathrm{R} \rightarrow \mathrm{R}$ by $h(x)=\left\{\begin{array}{llll}\max & \{f(x), g(x)\} & \text { if } & x \leq 0 \\ \min & \{f(x), g(x)\} & \text { if } & x>0\end{array}\right.$.
Then number of points at which $\mathrm{h}(\mathrm{x})$ is not differentiable is \qquad
*54. Let a, b, c be positive integers such that $\frac{b}{a}$ is an integer. If a, b, c are in geometric progression and the arithmetic mean of a, b, c is $b+2$, then the value of $\frac{a^{2}+a-14}{a+1}$ is \qquad
55. Let \vec{a}, \vec{b}, and \vec{c} be three non-coplanar unit vectors such that the angle between every pair of them is $\frac{\pi}{3}$. If $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}=p \vec{a}+q \vec{b}+r \vec{c}$, where p, q and r are scalars, then the value of $\frac{p^{2}+2 q^{2}+r^{2}}{q^{2}}$ is \qquad
56. The slope of the tangent to the curve $\left(y-x^{5}\right)^{2}=x\left(1+x^{2}\right)^{2}$ at the point $(1,3)$ is \qquad
57. The value of $\int_{0}^{1} 4 x^{3}\left\{\frac{d^{2}}{d x^{2}}\left(1-x^{2}\right)^{5}\right\} d x$ is \qquad
58. The largest value of the non-negative integer a for which $\lim _{x \rightarrow 1}\left\{\frac{-a x+\sin (x-1)+a}{x+\sin (x-1)-1}\right\}^{\frac{1-x}{1-\sqrt{x}}}=\frac{1}{4}$ is \qquad
*59. Let $f:[0,4 \pi] \rightarrow[0, \pi]$ be defined by $f(x)=\cos ^{-1}(\cos x)$. The number of points $x \in[0,4 \pi]$ satisfying the equation $f(x)=\frac{10-x}{10}$ is \qquad
*60. For a point P in the plane, let $d_{1}(\mathrm{P})$ and $d_{2}(\mathrm{P})$ be the distances of the point P from the lines $x-y=0$ and $x+$ $y=0$ respectively. The area of the region R consisting of all points P lying in the first quadrant of the plane and satisfying $2 \leq d_{1}(\mathrm{P})+d_{2}(\mathrm{P}) \leq 4$, is \qquad

JEE(ADVANCED)-2014 PAPER 1 CODE 5 ANSWERS

PART - I: PHYSICS

1.	D	2.	C, D	3.	A, D	4.	A, C, D
5.	A, C	6.	B, D	7.	A, B, D	8.	C
9.	A, B, C	10.	C, D	11.	4	12.	5
13.	2	14.	3	15.	3	16.	2
17.	5	18.	2	19.	4	20.	5

21. A, C, D
22. A, B, D
23. A, B, C
24. 7
25. 4
26. A, B, C
27. A, B, C
28. A
29. 4
30. 2
31. A, B, D
32. B, D
33. 6
34. 5
35. 1
36. A
37. B, C, D
38. 3
39. 6
40. 8

PART - III: MATHEMATICS

41. A, C, D
42. A, B, C
43. A, C
44. 3
45. 2
46. B, D
47. C
48. A, B, C
49. 4
50. 2
51. A, D
52. C, D
53. 7
54. 4
55. 3
56. B, C
57. A, B
58. 5
59. 8
60. 6

HINTS AND SOLUTIONS

PART - I: PHYSICS

1. $\quad \ell=\frac{1}{4 v} \sqrt{\frac{\gamma \mathrm{RT}}{\mathrm{M}}}$

Calculations for $\frac{1}{4 v} \sqrt{\frac{\gamma \mathrm{RT}}{\mathrm{M}}}$ for gases mentioned in options A, B, C and D, work out to be $0.459 \mathrm{~m}, 0.363 \mathrm{~m}$ $0.340 \mathrm{~m} \& 0.348 \mathrm{~m}$ respectively. As $\ell=(0.350 \pm 0.005) \mathrm{m}$; Hence correct option is D.
2. As current leads voltage by $\pi / 2$ in the given circuit initially, then ac voltage can be represent as $\mathrm{V}=\mathrm{V}_{0} \sin \omega \mathrm{t}$
$\therefore \quad \mathrm{q}=\mathrm{CV}_{0} \sin \omega \mathrm{t}=\mathrm{Q} \sin \omega \mathrm{t}$
where, $\mathrm{Q}=2 \times 10^{-3} \mathrm{C}$

- At $t=7 \pi / 6 \omega ; \quad I=-\frac{\sqrt{3}}{2} I_{0}$ and hence current is anticlockwise.
- Current ' i ' immediately after $\mathrm{t}=\frac{7 \pi}{6 \omega}$ is

$$
\mathrm{i}=\frac{\mathrm{V}_{\mathrm{c}}+50}{\mathrm{R}}=10 \mathrm{~A}
$$

- Charge flow $=\mathrm{Q}_{\text {final }}-\mathrm{Q}_{(7 / / 6)}=2 \times 10^{-6} \mathrm{C}$

Hence C \& D are correct options.
3. $\mathrm{As} E=\mathrm{V} / \mathrm{d}$
$\mathrm{E}_{1} / \mathrm{E}_{2}=1$ (both parts have common potential difference)
Assume C_{0} be the capacitance without dielectric for whole capacitor.

$$
\begin{aligned}
& \mathrm{k} \frac{\mathrm{C}_{0}}{3}+\frac{2 \mathrm{C}_{0}}{3}=\mathrm{C} \\
& \frac{\mathrm{C}}{\mathrm{C}_{1}}=\frac{2+\mathrm{k}}{\mathrm{k}} \\
& \frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}=\frac{\mathrm{k}}{2} .
\end{aligned}
$$

4. Taking $y(t)=A f(x) g(t) \&$ Applying the conditions:

1 ; here $\mathrm{x}=3 \mathrm{~m}$ is antinode $\& \mathrm{x}=0$ is node
2; possible frequencies are odd multiple of fundamental frequency.
where, $v_{\text {findamental }}=\frac{\mathrm{v}}{4 \ell}=\frac{25}{3} \mathrm{~Hz}$
The correct options are A, C, D.
5. For air to glass

$$
\frac{1.5}{f_{1}}=\frac{1.4-1}{R}+\frac{1.5-1.4}{R}
$$

$\therefore \mathrm{f}_{1}=3 \mathrm{R}$
For glass to air.

$$
\begin{aligned}
\quad \frac{1}{f_{2}} & =\frac{1.4-1.5}{-R}+\frac{1-1.4}{-R} \\
\therefore \quad & f_{2}=2 R
\end{aligned}
$$

6. $\mathrm{H}=\frac{\mathrm{V}^{2}}{\mathrm{R}} 4=\frac{\mathrm{V}^{2}}{\mathrm{R} / 2} \mathrm{t}_{1}=\frac{\mathrm{V}^{2}}{\mathrm{R} / 8} \mathrm{t}_{2}$
$\mathrm{t}_{1}=2 \mathrm{~min}$.
$\mathrm{t}_{2}=0.5 \mathrm{~min}$.
7. $\mathrm{V}_{1}=\frac{\mathrm{R}_{1}\left(\mathrm{~V}_{1}+\mathrm{V}_{2}\right)}{\mathrm{R}_{1}+\mathrm{R}_{3}} \Rightarrow \mathrm{~V}_{1} \mathrm{R}_{3}=\mathrm{V}_{2} \mathrm{R}_{1}$
$V_{2}=\frac{R_{3}\left(V_{1}+V_{2}\right)}{R_{1}+R_{3}} \Rightarrow V_{2} R_{1}=V_{2} R_{3}$
8. $\frac{\mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{r}_{0}^{2}}=\frac{\lambda}{2 \pi \varepsilon_{0} \mathrm{r}_{0}}=\frac{\sigma}{2 \varepsilon_{0}}$
$\mathrm{E}_{1}\left(\frac{\mathrm{r}_{0}}{2}\right)=\frac{\mathrm{Q}}{\pi \varepsilon_{0} \mathrm{r}_{0}^{2}}, \mathrm{E}_{2}\left(\frac{\mathrm{r}_{0}}{2}\right)=\frac{\lambda}{\pi \varepsilon_{0} \mathrm{r}_{0}}, \mathrm{E}_{3}\left(\frac{\mathrm{r}_{0}}{2}\right)=\frac{\sigma}{2 \varepsilon_{0}}$
$\therefore \quad \mathrm{E}_{1}\left(\frac{\mathrm{r}_{0}}{2}\right)=2 \mathrm{E}_{2}\left(\frac{\mathrm{r}_{0}}{2}\right)$
9. $\beta=\frac{D \lambda}{d}$
$\because \lambda_{2}>\lambda_{1} \Rightarrow \beta_{2}>\beta_{1}$
Also $m_{1} \beta_{1}=m_{2} \beta_{2} \Rightarrow m_{1}>m_{2}$
Also $3\left(\frac{\mathrm{D}}{\mathrm{d}}\right)(600 \mathrm{~nm})=(2 \times 5-1)\left(\frac{\mathrm{D}}{2 \mathrm{~d}}\right) 400 \mathrm{~nm}$
Angular width $\theta=\frac{\lambda}{\mathrm{d}}$
10. Condition of translational equilibrium
$\mathrm{N}_{1}=\mu_{2} \mathrm{~N}_{2}$
$\mathrm{N}_{2}+\mu_{1} \mathrm{~N}_{1}=\mathrm{Mg}$
Solving $\mathrm{N}_{2}=\frac{\mathrm{mg}}{1+\mu_{1} \mu_{2}}$

$$
\mathrm{N}_{1}=\frac{\mu_{2} \mathrm{mg}}{1+\mu_{1} \mu_{2}}
$$

Applying torque equation about corner (left) point on the floor

$$
\mathrm{mg} \frac{\ell}{2} \cos \theta=\mathrm{N}_{1} \ell \sin \theta+\mu_{1} \mathrm{~N}_{1} \ell \cos \theta
$$

Solving $\tan \theta=\frac{1-\mu_{1} \mu_{2}}{2 \mu_{2}}$
11. $\mathrm{Y}=\frac{\mathrm{FL}}{\ell \mathrm{A}}$ since the experiment measures only change in the length of wire
$\therefore \quad \frac{\Delta \mathrm{Y}}{\mathrm{Y}} \times 100=\frac{\Delta \ell}{\ell} \times 100$
From the observation $\ell_{1}=$ MSR $+20(\mathrm{LC})$
$\ell_{2}=\mathrm{MSR}+45(\mathrm{LC})$
\Rightarrow change in lengths $=25(\mathrm{LC})$
and the maximum permissible error in elongation is one LC
$\therefore \frac{\Delta \mathrm{Y}}{\mathrm{Y}} \times 100=\frac{(\mathrm{LC})}{25(\mathrm{LC})} \times 100=4$
12. The relative velocity of B with respect to A is perpendicular to line of motion of A.
$\therefore \quad \mathrm{V}_{\mathrm{B}} \cos 30^{\circ}=\mathrm{V}_{\mathrm{A}}$
$\Rightarrow \quad V_{B}=200 \mathrm{~m} / \mathrm{s}$
And time $\mathrm{t}_{0}=($ Relative distance $) /($ Relative velocity $)$

$=\frac{500}{\mathrm{~V}_{\mathrm{B}} \sin 30^{\circ}}=5 \mathrm{sec}$
13. $\mathrm{U}_{\mathrm{b}}=200 \mathrm{~J}, \mathrm{U}_{\mathrm{i}}=100 \mathrm{~J}$

Process iaf

Process	W(in Joule)	Δ U(in Joule)	Q(in Joule)
ia		0	
af		200	
Net	300	200	500

$\Rightarrow \mathrm{U}_{\mathrm{f}}=400$ Joule
Process ibf

Process	W(in Joule)	$\Delta \mathrm{U}$ (in Joule)	Q (in Joule)
ib	100	50	150
bf	200	100	300
Net	300	150	450

$\Rightarrow \quad \frac{\mathrm{Q}_{\mathrm{bf}}}{\mathrm{Q}_{\mathrm{ib}}}=\frac{300}{150}=2$
14. Case - I

$\mathrm{B}_{1}=\frac{1}{2}\left(\frac{\mu_{0}}{2 \pi}\right)\left(\frac{3 \mathrm{I}}{\mathrm{x}_{0}}\right)$
$\mathrm{R}_{1}=\frac{\mathrm{mv}}{\mathrm{qB}_{1}}$

$\mathrm{R}_{2}=\frac{\mathrm{mv}}{\mathrm{qB}_{2}}$
$\Rightarrow \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{\mathrm{B}_{2}}{\mathrm{~B}_{1}}=\frac{1 / 3}{1 / 9}=3$
15. $d \propto \rho^{x} S^{y} F^{z}$
$\Rightarrow \quad[\mathrm{L}] \equiv\left[\mathrm{ML}^{-3}\right]^{\mathrm{x}}\left[\mathrm{MT}^{-3}\right]^{\mathrm{y}}\left[\mathrm{T}^{-1}\right]^{\mathrm{z}}$
$\Rightarrow \mathrm{x}+\mathrm{y}=0,-3 \mathrm{x}=1,-3 \mathrm{y}-\mathrm{z}=0$

$$
\begin{aligned}
& \Rightarrow \mathrm{x}=\frac{-1}{3}, \mathrm{y}=\frac{1}{3}, \mathrm{z}=-1 \\
& \Rightarrow \mathrm{y}=\frac{1}{\mathrm{n}} \\
& \Rightarrow \mathrm{n}=3
\end{aligned}
$$

16. Maximum displacement of the left ball from the left wall of the chamber is 2.25 cm , so the right ball has to travel almost the whole length of the chamber (4 m) to hit the left ball. So the time taken by the right ball is 1.9 sec (approximately 2 sec)
17.

$i=\frac{V}{R}$
$0.006=\frac{30}{4990+\mathrm{R}}$
品 0.006
$\mathrm{i}_{\mathrm{RS}}=1.494$
Since R_{G} and R_{S} are in parallel, $\mathrm{i}_{\mathrm{G}} \mathrm{R}_{\mathrm{G}}=\mathrm{i}_{\mathrm{S}} \mathrm{R}_{\mathrm{S}}$
$0.006 \mathrm{R}=1.494\left(\frac{2 \mathrm{n}}{249}\right)$
$\therefore \mathrm{n}=5$
18. $\tau=\mathrm{I} \alpha$

3 FRsin $30^{\circ}=\mathrm{I} \alpha$
$\mathrm{I}=\frac{\mathrm{MR}^{2}}{2}$
$\alpha=2$
$\omega=\omega_{0}+\alpha \mathrm{t}$
$\omega=2 \mathrm{rad} / \mathrm{s}$

19. Since net torque about centre of rotation is zero, so we can apply conservation of angular momentum of the system about center of disc
$\mathrm{L}_{\mathrm{i}}=\mathrm{L}_{\mathrm{f}}$
$0=\mathrm{I} \omega+2 \mathrm{mv}(\mathrm{r} / 2)$; comparing magnitude
$\therefore\left(\frac{0.45 \times 0.5 \times 0.5}{2}\right) \omega=0.05 \times 9 \times \frac{0.5}{2} \times 2$
$\therefore \omega=4$
20. Using work energy theorem
$\mathrm{W}_{\mathrm{mg}}+\mathrm{W}_{\mathrm{F}}=\Delta \mathrm{KE}$
$-\mathrm{mgh}+\mathrm{Fd}=\Delta \mathrm{KE}$
$-1 \times 10 \times 4+18(5)=\Delta \mathrm{KE}$
$\Delta \mathrm{KE}=50$
$\therefore \mathrm{n}=5$

PART - II: CHEMISTRY

SECTION - 1:

21. Isomeric alcohols of $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ are

22. Since container is thermally insulated. $\mathrm{So}, \mathrm{q}=0$, and it is a case of free expansion therefore $\mathrm{W}=0$ and $\Delta \mathrm{E}=0$
So, $\mathrm{T}_{1}=\mathrm{T}_{2}$
Also, $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
23. (A) Ice has cage-like structure in which each water molecule is surrounded by four other water molecules tetrahedrally through hydrogen boding, due to this density of ice is less than water and it floats in water.
(B)

(I)
$(\mathrm{R})_{3} \mathrm{~N}+\mathrm{H}-\mathrm{OH} \rightleftharpoons(\mathrm{R})_{3}-\underset{(\mathrm{II})}{\stackrel{\oplus}{\mathrm{N}}} \mathrm{H}+\mathrm{OH}^{-}$
The cation (I) more stabilized through hydrogen boding than cation (II). So, $\mathrm{R}-\mathrm{NH}_{2}$ is better base than $(\mathrm{R})_{3} \mathrm{~N}$ in aqueous solution.
(C) HCOOH is stronger acid than $\mathrm{CH}_{3} \mathrm{COOH}$ due to inductive effect and not due to hydrogen bonding.
(D) Acetic acid dimerizes in benzene through intermolecular hydrogen bonding.

24. The balanced equation is,

$$
\mathrm{ClO}_{3}^{-}+6 \mathrm{I}^{-}+6 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 3 \mathrm{I}_{2}+\mathrm{Cl}^{-}+6 \mathrm{HSO}_{4}^{-}+3 \mathrm{H}_{2} \mathrm{O}
$$

26.

27. (A) $\mathrm{H}_{3} \mathrm{BO}_{3}$ is a weak monobasic Lewis acid.

$$
\begin{equation*}
\mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{H}-\mathrm{OH} \rightleftharpoons \mathrm{~B}(\mathrm{OH})_{4}^{-}+\mathrm{H}^{+} \tag{i}
\end{equation*}
$$

(B) Equilibrium (i) is shifted in forward direction by the addition of syn-diols like ethylene glycol which forms a stable complex with $\mathrm{B}(\mathrm{OH})_{4}^{-}$.

(C) It has a planar sheet like structure due to hydrogen bonding.
(D) $\mathrm{H}_{3} \mathrm{BO}_{3}$ is a weak electrolyte in water.
28. (A) $2 \mathrm{CuFeS}_{2}+\mathrm{O}_{2} \xrightarrow{\Delta} \mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{FeS}+\mathrm{SO}_{2}$
(B) $4 \mathrm{CuO} \xrightarrow{1100^{\circ} \mathrm{C}} 2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{O}_{2}$ $2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \xrightarrow{\Delta} 6 \mathrm{Cu}+\mathrm{SO}_{2}$
(C) $\mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{Cu}_{2} \mathrm{O} \xrightarrow{\Delta} 6 \mathrm{Cu}+\mathrm{SO}_{2}$
(D) $\mathrm{CuSO}_{4} \xrightarrow{720^{\circ} \mathrm{C}} \mathrm{CuO}+\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2}$
$4 \mathrm{CuO} \xrightarrow{1100^{\circ} \mathrm{C}} 2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{O}_{2}$
$2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \xrightarrow{\Delta} 6 \mathrm{Cu}+\mathrm{SO}_{2}$
29. (A) sodium (Na) when dissolved in excess liquid ammonia, forms a blue coloured paramagnetic solution.
(B) $\mathrm{K}+\mathrm{O}_{2} \longrightarrow \underset{\text { (potassium superoxide) }}{\mathrm{KO}_{2}}$ and KO_{2} is paramagnetic.
(C) $3 \mathrm{Cu}+\underset{\text { (dilute) }}{8 \mathrm{HNO}_{3} \longrightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}, ~}$

Where "NO" is paramagnetic.
(D)

Where " $\mathrm{H}_{2} \mathrm{O}_{2}$ " is diamagnetic.
30. Only amines undergo acetylation and not acid amides.

SECTION - 2:

31. Black coloured sulphides $\left\{\mathrm{PbS}, \mathrm{CuS}, \mathrm{HgS}, \mathrm{Ag}_{2} \mathrm{~S}, \mathrm{NiS}, \mathrm{CoS}\right\}$

* $\mathrm{Bi}_{2} \mathrm{~S}_{3}$ in its crystalline form is dark brown but $\mathrm{Bi}_{2} \mathrm{~S}_{3}$ precipitate obtained is black in colour.

32.

33. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{CuSO}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Cl}_{2}, \mathrm{O}_{3}, \mathrm{FeCl}_{3}, \mathrm{HNO}_{3}$
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+7 \mathrm{H}_{2} \mathrm{SO}_{4}+6 \mathrm{KI} \longrightarrow 4 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{I}_{2}+7 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{CuSO}_{4}+4 \mathrm{KI} \longrightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+\mathrm{I}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}$
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{KI} \longrightarrow \mathrm{I}_{2}+2 \mathrm{KOH}$
$\mathrm{Cl}_{2}+2 \mathrm{KI} \longrightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}$
$\mathrm{O}_{3}+2 \mathrm{KI}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{KOH}+\mathrm{I}_{2}+\mathrm{O}_{2}$
$2 \mathrm{FeCl}_{3}+2 \mathrm{KI} \longrightarrow 2 \mathrm{FeCl}_{2}+\mathrm{I}_{2}+2 \mathrm{KCl}$
$8 \mathrm{HNO}_{3}+6 \mathrm{KI} \longrightarrow 6 \mathrm{KNO}_{3}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{I}_{2}$
$2 \mathrm{KMnO}_{4}+\mathrm{KI}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{KIO}_{3}+2 \mathrm{MnO}_{2}+2 \mathrm{KOH}$
34. $\quad \mathrm{XeF}_{4} \rightarrow$ Square planar
$\mathrm{BrF}_{4}^{-} \rightarrow$ Square planar
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \rightarrow$ Square planar
$\left[\mathrm{Pt} \mathrm{Cl}_{4}\right]^{2-} \rightarrow$ Square planar
$\mathrm{SF}_{4} \rightarrow$ See -saw
$\mathrm{SiF}_{4} \rightarrow$ Tetrahedral
$\mathrm{BF}_{4}^{-} \rightarrow$ Tetrahedral
$\left[\mathrm{FeCl}_{4}\right]^{2-} \rightarrow$ Tetrahedral
$\left[\mathrm{CoCl}_{4}\right]^{2-} \rightarrow$ Tetrahedral
35. (1)

(2)

(3)

Will give a racemic mixture on reduction with NaBH_{4}

Will give a racemic mixture on reduction with NaBH_{4}
(4)

(5)

Will give a racemic mixture on reduction with NaBH_{4}
(6)

Will give a racemic mixture on reduction with NaBH_{4}
36. $\mathrm{n}=4$
$\ell=0,1,2,3$
$\left|\mathrm{m}_{\ell}\right|=1 \Rightarrow \pm 1$
$\mathrm{m}_{\mathrm{s}}=-\frac{1}{2}$
For $\ell=0, \mathrm{~m}_{\ell}=0$
$\ell=1, \mathrm{~m}_{\ell}=-1,0,+1$
$\ell=2, \mathrm{~m}_{\ell}=-2,-1,0,+1,+2$
$\ell=3, \mathrm{~m}_{\ell}=-3,-2,-1,0,+1,+2,+3$
So, six electrons can have $\left|m_{\ell}\right|=1 \& m_{s}=-\frac{1}{2} 37 . \quad k=\frac{R}{N_{A}}$
$\mathrm{R}=\mathrm{kN}_{\mathrm{A}}$
$=1.380 \times 10^{-23} \times 6.023 \times 10^{23}$

$$
\begin{aligned}
& =8.31174 \\
& \approx 8.312
\end{aligned}
$$

38. $\quad \mathrm{MX}_{2} \rightleftharpoons \mathrm{M}^{2+}+2 \mathrm{X}^{-}$
$1-\alpha \quad \alpha \quad 2 \alpha$
$\mathrm{i}=1+2 \alpha \quad\{\alpha=0.5\}$
$\mathbf{i}=\mathbf{2}$
39. This peptide on complete hydrolysis produced 4 distinct amino acids which are given below:
(1)

Glycine
(natural)
(2)

(3)

(4)

Only glycine is naturally occurring amino acid.
40. Here, $\mathrm{V}_{\text {solution }} \approx \mathrm{V}_{\text {solvent }}$

Since, in 1ℓ solution, 3.2 moles of solute are present,
So, 1ℓ solution $\approx 1 \ell$ solvent $(d=0.4 \mathrm{~g} / \mathrm{ml}) \approx 0.4 \mathrm{~kg}$
So, molality $(\mathrm{m})=\frac{\text { moles of solute }}{\text { mass of solvent }(\mathrm{kg})}=\frac{3.2}{0.4}=8$

PART-III: MATHEMATICS

41. $f^{\prime}(x)=\frac{2 e^{-\left(x+\frac{1}{x}\right)}}{x}$

Which is increasing in $[1, \infty)$
Also, $f(x)+f\left(\frac{1}{x}\right)=0$
$g(x)=f\left(2^{x}\right)=\int_{2^{-x}}^{2^{x}} \frac{e^{-\left(t+\frac{1}{t}\right)}}{t} d t$
$g(-x)=\int_{2^{x}}^{2^{-x}} \frac{e^{-\left(t+\frac{1}{t}\right)}}{t} d t=-g(x)$
Hence, an odd function
42. Let $y=x^{5}-5 x$

43. Let $f(x)$ and $g(x)$ achieve their maximum value at x_{1} and x_{2} respectively
$\mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})$
$h\left(x_{1}\right)=f\left(x_{1}\right)-g\left(x_{1}\right) \geq 0$
$\mathrm{h}\left(\mathrm{x}_{2}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)-\mathrm{g}\left(\mathrm{x}_{2}\right) \leq 0$
$\Rightarrow \mathrm{h}(\mathrm{c})=0$ where $\mathrm{c} \in[0,1] \Rightarrow \mathrm{f}(\mathrm{c})=\mathrm{g}(\mathrm{c})$.
44. Given circles
$x^{2}+y^{2}-2 x-15=0$
$x^{2}+y^{2}-1=0$
Radical axis $\mathrm{x}+7=0$
Centre of circle lies on (1)
Let the centre be $(-7, k)$
Let equation be $x^{2}+y^{2}+14 x-2 k y+c=0$
Orthogonallity gives
$-14=\mathrm{c}-15 \Rightarrow \mathrm{c}=1$
$(0,1) \rightarrow 1-2 \mathrm{k}+1=0 \Rightarrow \mathrm{k}=1$
Hence radius $=\sqrt{7^{2}+k^{2}-c}=\sqrt{49+1-1}=7$
Alternate solution
Given circles $\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-15=0$

$$
x^{2}+y^{2}-1=0
$$

Let equation of circle $x^{2}+y^{2}+2 g x+2 f y+c=0$
Circle passes through $(0,1)$
$\Rightarrow 1+2 \mathrm{f}+\mathrm{c}=0$
Applying condition of orthogonality
$-2 \mathrm{~g}=\mathrm{c}-15,0=\mathrm{c}-1$
$\Rightarrow \mathrm{c}=1, \mathrm{~g}=7, \mathrm{f}=-1$
$\mathrm{r}=\sqrt{49+1-1}=7 ;$ centre $(-7,1)$
45. \vec{a} is in direction of $\vec{x} \times(\vec{y} \times \vec{z})$
i.e. $(\vec{x} \cdot \vec{z}) \vec{y}-(\vec{x} \cdot \vec{y}) \vec{z}$
$\Rightarrow \overrightarrow{\mathrm{a}}=\lambda_{1}\left[2 \times \frac{1}{2}(\overrightarrow{\mathrm{y}}-\overrightarrow{\mathrm{z}})\right]$
$\vec{a}=\lambda_{1}(\vec{y}-\vec{z})$
Now $\vec{a} \cdot \vec{y}=\lambda_{1}(\vec{y} \cdot \vec{y}-\vec{y} \cdot \vec{z})$
$=\lambda_{1}(2-1) \Rightarrow \lambda_{1}=\vec{a} \cdot \vec{y}$
From (1) and (2), $\vec{a}=\vec{a} \cdot \vec{y}(\vec{y}-\vec{z})$
Similarly, $\vec{b}=(\vec{b} \cdot \vec{z})(\vec{z}-\vec{x})$
Now, $\vec{a} \cdot \vec{b}=(\vec{a} \cdot \vec{y})(\vec{b} \cdot \vec{z})[(\vec{y}-\vec{z}) \cdot(\vec{z}-\vec{x})]$
$=(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{y}})(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{z}})[1-1-2+1]$
$=-(\vec{a} \cdot \vec{y})(\vec{b} \cdot \vec{z})$.
46. Line 1: $\frac{x}{1}=\frac{y}{1}=\frac{z-1}{0}=r, Q(r, r, 1)$

Line 2: $\frac{\mathrm{x}}{1}=\frac{\mathrm{y}}{-1}=\frac{\mathrm{z}+1}{0}=\mathrm{k}, \mathrm{R}(\mathrm{k},-\mathrm{k},-1)$
$\overrightarrow{\mathrm{PQ}}=(\lambda-\mathrm{r}) \hat{\mathrm{i}}+(\lambda-\mathrm{r}) \hat{\mathrm{j}}+(\lambda-1) \hat{\mathrm{k}}$
and $\lambda-\mathrm{r}+\lambda-\mathrm{r}=0$ as $\overrightarrow{\mathrm{PQ}}$ is \perp to L_{1}
$\Rightarrow 2 \lambda=2 \mathrm{r} \Rightarrow \lambda=\mathrm{r}$
$\overrightarrow{\mathrm{PR}}=(\lambda-\mathrm{k}) \hat{\mathrm{i}}+(\lambda+\mathrm{k}) \hat{\mathrm{j}}+(\lambda+1) \hat{\mathrm{k}}$
and $\lambda-\mathrm{k}-\lambda-\mathrm{k}=0$ as $\overrightarrow{\mathrm{PR}}$ is \perp to L_{2}
$\Rightarrow \mathrm{k}=0$
so $\mathrm{PQ} \perp \mathrm{PR}$
$(\lambda-\mathrm{r})(\lambda-\mathrm{k})+(\lambda-\mathrm{r})(\lambda+\mathrm{k})+(\lambda-1)(\lambda+1)=0$
$\Rightarrow \lambda=1,-1$
For $\lambda=1$ as points P and Q coincide
$\Rightarrow \lambda=-1$.
47. Let $\mathrm{M}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{c} \\ \mathrm{c} & \mathrm{b}\end{array}\right]$ (where $\left.\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{I}\right)$
then $\operatorname{Det} \mathrm{M}=\mathrm{ab}-\mathrm{c}^{2}$
if $\mathrm{a}=\mathrm{b}=\mathrm{c}, \operatorname{Det}(\mathrm{M})=0$
if $c=0, a, b \neq 0, \operatorname{Det}(M) \neq 0$
if $a b \neq$ square of integer, $\operatorname{Det}(M) \neq 0$
48. $\quad \mathrm{M}^{2}=\mathrm{N}^{4} \Rightarrow \mathrm{M}^{2}-\mathrm{N}^{4}=\mathrm{O} \Rightarrow\left(\mathrm{M}-\mathrm{N}^{2}\right)\left(\mathrm{M}+\mathrm{N}^{2}\right)=\mathrm{O}$ (As M, N commute.)

Also, $M \neq N^{2}$, $\operatorname{Det}\left(\left(M-N^{2}\right)\left(M+N^{2}\right)\right)=0$
As $\mathrm{M}-\mathrm{N}^{2}$ is not null $\Rightarrow \operatorname{Det}\left(\mathrm{M}+\mathrm{N}^{2}\right)=0$
Also $\operatorname{Det}\left(\mathrm{M}^{2}+\mathrm{MN}^{2}\right)=(\operatorname{Det} \mathrm{M})\left(\operatorname{Det}\left(\mathrm{M}+\mathrm{N}^{2}\right)\right)=0$
\Rightarrow There exist non-null U such that $\left(\mathrm{M}^{2}+\mathrm{MN}^{2}\right) \mathrm{U}=\mathrm{O}$
49. Since $f(x) \geq 1 \forall x \in[a, b]$
for $g(x)$
LHD at $\mathrm{x}=\mathrm{a}$ is zero

$$
\int^{\mathrm{x}} \mathrm{f}(\mathrm{t}) \mathrm{dt}-0
$$

and RHD at $(x=a)=\lim _{x \rightarrow a^{+}} \frac{a}{x-a}=\lim _{x \rightarrow a^{+}} f(x) \geq 1$
Hence $g(x)$ is not differentiable at $x=a$
Similarly LHD at $x=b$ is greater than 1
$\mathrm{g}(\mathrm{x})$ is not differentiable at $\mathrm{x}=\mathrm{b}$
50. $\quad \mathrm{f}(\mathrm{x})=(\log (\sec \mathrm{x}+\tan \mathrm{x}))^{3} \quad \forall \mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
$f(-x)=-f(x)$, hence $f(x)$ is odd function
Let $g(x)=\sec x+\tan x \quad \forall x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
$\Rightarrow \mathrm{g}^{\prime}(\mathrm{x})=\sec \mathrm{x}(\sec \mathrm{x}+\tan \mathrm{x})>0 \forall \mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
$\Rightarrow \mathrm{g}(\mathrm{x})$ is one-one function
Hence $\left(\log _{e}(g(x))\right)^{3}$ is one-one function.
and $\mathrm{g}(\mathrm{x}) \in(0, \propto) \forall \mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
$\Rightarrow \log (\mathrm{g}(\mathrm{x})) \in \mathrm{R}$. Hence $\mathrm{f}(\mathrm{x})$ is an onto function.
51. When n_{5} takes value from 10 to 6 the carry forward moves from 0 to 4 which can be arranged in
${ }^{4} C_{0}+\frac{{ }^{4} C_{1}}{4}+\frac{{ }^{4} C_{2}}{3}+\frac{{ }^{4} C_{3}}{2}+\frac{{ }^{4} C_{4}}{1}=7$

Alternate solution

Possible solutions are
1, 2, 3, 4, 10
$1,2,3,5,9$
$1,2,3,6,8$
$1,2,4,5,8$
$1,2,4,6,7$
$1,3,4,5,7$
$2,3,4,5,6$
Hence 7 solutions are there.
52. Number of red lines $={ }^{n} C_{2}-n$

Number of blue lines $=n$
Hence, ${ }^{\mathrm{n}} \mathrm{C}_{2}-\mathrm{n}=\mathrm{n}$
${ }^{\mathrm{n}} \mathrm{C}_{2}=2 \mathrm{n}$
$\frac{\mathrm{n}(\mathrm{n}-1)}{2}=2 \mathrm{n}$
$\mathrm{n}-1=4 \Rightarrow \mathrm{n}=5$.
53. $h(x)=\left\{\begin{array}{lll}x^{2}+1 & , & x \in(-\infty,-1] \\ -x+1 & , & x \in[-1,0] \\ x^{2}+1 & , & x \in[0,1] \\ x+1 & , & x \in[1, \infty)\end{array}\right.$

Hence, not differentiable at $x=-1,0,1$

54. $\frac{\mathrm{b}}{\mathrm{a}}=\frac{\mathrm{c}}{\mathrm{b}}=($ integer $)$
$\mathrm{b}^{2}=\mathrm{ac} \Rightarrow \mathrm{c}=\frac{\mathrm{b}^{2}}{\mathrm{a}}$
$\frac{a+b+c}{3}=b+2$
$\mathrm{a}+\mathrm{b}+\mathrm{c}=3 \mathrm{~b}+6 \Rightarrow \mathrm{a}-2 \mathrm{~b}+\mathrm{c}=6$
$a-2 b+\frac{b^{2}}{a}=6 \Rightarrow 1-\frac{2 b}{a}+\frac{b^{2}}{a^{2}}=\frac{6}{a}$
$\left(\frac{b}{a}-1\right)^{2}=\frac{6}{a} \Rightarrow a=6$ only
55. $\quad|\vec{a}|=|\vec{b}|=|\vec{c}|=1$
$\vec{a} \times \vec{b}+\vec{b} \times \vec{c}=p \vec{a}+q \vec{b}+r \vec{c}$
$\vec{a} \cdot(\vec{b} \times \vec{c})=p+q(\vec{a} \cdot \vec{b})+r(\vec{a} \cdot \vec{c})$
And $\left[\begin{array}{lll}\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{b}} & \overrightarrow{\mathrm{c}}\end{array}\right]=\frac{1}{\sqrt{2}}$
$\mathrm{p}+\frac{\mathrm{q}}{2}+\frac{\mathrm{r}}{2}=[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]$
$\frac{\mathrm{p}}{2}+\mathrm{q}+\frac{\mathrm{r}}{2}=0$
$\frac{\mathrm{p}}{2}+\frac{\mathrm{q}}{2}+\mathrm{r}=[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]$
$\Rightarrow \mathrm{p}=\mathrm{r}=-\mathrm{q}$
$\frac{\mathrm{p}^{2}+2 \mathrm{q}^{2}+\mathrm{r}^{2}}{\mathrm{q}^{2}}=4$
56. $2\left(y-x^{5}\right)\left(\frac{d y}{d x}-5 x^{4}\right)$
$=1\left(1+\mathrm{x}^{2}\right)^{2}+(\mathrm{x})\left(2\left(1+\mathrm{x}^{2}\right)(2 \mathrm{x})\right)$
Now put $x=1, y=3$ and $\frac{d y}{d x}=m$.
$2(3-1)(m-5)=1(4)+(1)(4)(2)$
$\mathrm{m}-5=\frac{12}{4}$
$\mathrm{m}=5+3=8$
$\frac{d y}{d x}=m=8$.
57. $\int_{0}^{1} 4 x_{I}^{3} \frac{d^{2}}{{d x^{2}}^{2}}\left(1-\mathrm{x}^{2}\right)_{\text {II }}^{5} d x$
$=\left[4 \mathrm{x}^{3} \frac{\mathrm{~d}}{\mathrm{dx}}\left(1-\mathrm{x}^{2}\right)^{5}\right]_{0}^{1}-\int_{0}^{1} 12 \mathrm{x}^{2} \frac{\mathrm{~d}}{\mathrm{dx}}\left(1-\mathrm{x}^{2}\right)^{5} \mathrm{dx}$
$=\left[4 x^{3} \times 5\left(1-x^{2}\right)^{4}(-2 x)\right]_{0}^{1}-12\left[\left[x^{2}\left(1-x^{2}\right)^{5}\right]_{0}^{1}-\int_{0}^{1} 2 x\left(1-x^{2}\right)^{5} d x\right]$
$=0-0-12[0-0]+12 \int_{0}^{1} 2 x\left(1-x^{2}\right)^{5} d x$
$=12 \times\left[-\frac{\left(1-x^{2}\right)^{6}}{6}\right]_{0}^{1}$
$=12\left[0+\frac{1}{6}\right]=2$
58. $\lim _{x \rightarrow 1}\left(\frac{-a x+\sin (x-1)+a}{x+\sin (x-1)-1}\right)^{\frac{1-x}{1-\sqrt{x}}}=\frac{1}{4}$
$\lim _{x \rightarrow 1}\left(\frac{\frac{\sin (x-1)}{(x-1)}-a}{\frac{\sin (x-1)}{(x-1)}+1}\right)^{(1+\sqrt{x})}=\frac{1}{4} \Rightarrow\left(\frac{1-a}{2}\right)^{2}=\frac{1}{4}$
$\Rightarrow \mathrm{a}=0, \mathrm{a}=2$
$\Rightarrow \mathrm{a}=2$
59. $\quad \mathrm{f}:[0,4 \pi] \rightarrow[0, \pi], \mathrm{f}(\mathrm{x})=\cos ^{-1}(\cos \mathrm{x})$
\Rightarrow point A, B, C satisfy $\mathrm{f}(\mathrm{x})=\frac{10-\mathrm{x}}{10}$
Hence, 3 points

60. $2 \leq d_{1}(p)+d_{2}(p) \leq 4$

For $\mathrm{P}(\alpha, \beta), \alpha>\beta$
$\Rightarrow 2 \sqrt{2} \leq 2 \alpha \leq 4 \sqrt{2}$
$\sqrt{2} \leq \alpha \leq 2 \sqrt{2}$
\Rightarrow Area of region $=\left((2 \sqrt{2})^{2}-(\sqrt{2})^{2}\right)$

$$
=8-2=6 \text { sq. units }
$$

D. Marking Scheme

16. For each questions in Section1, you will be awarded 3 marks if you darken all the bubbles(s) corresponding to the correct answer(s) and zero mark if no bubbles are darkened. No negative marks will be awarded for incorrect answers in this section.
17. For each question in Section 2, you will be awarded 3 marks if you darken only the bubble corresponding to the correct answer and zero mark if no bubble is darkened. No negative marks will be awarded from incorrect answer in this section.

Appropriate way of darkening the bubble for your answer to be evaluated:

Figure-1 : Correct way of bubbling for a valid answer and a few examples of invalid answers. Any other form of partial marking such as ticking or crossing the bubble will be considered invalid.

5	0	4	5	2	3	1
0	\square	0	0	0	0	0
1	1	\square	\square	\square	1	
2	2	2	\bigcirc	\square	2	2
\bigcirc	3	3	3	3		3
4	4		4	4	4	4
\rightarrow	5	5		5	5	5
6	6	6	6	6	6	\bigcirc
7	7	7	7	7	7	7
8	\bigcirc	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	9	9	9	9	9	9

Figure-2 : Correct Way of Bubbling your Roll Number on the ORS. (Example Roll Number : 5045231)

[^0]: *40. A compound $\mathrm{H}_{2} \mathrm{X}$ with molar weight of 80 g is dissolved in a solvent having density of $0.4 \mathrm{gml}^{-1}$. Assuming no change in volume upon dissolution, the molality of a 3.2 molar solution is

